Die Kristallstruktur von (NH₄)₃PO₄. 3H₂O, Triammonium-orthophosphat-trihydrat*

VON DIETRICH MOOTZ UND HARTMUT WUNDERLICH

Abteilung für Röntgenstrukturanalyse, Gesellschaft für Molekularbiologische Forschung m.b.H., 3301 Stöckheim über Braunschweig, Deutschland

(Eingegangen am 7. November 1969)

Triammonium orthophosphate trihydrate $(P2_1/c; a=6.686, b=6.218, c=22.349 \text{ Å}; \beta=94.13^\circ; Z=4;$ final R value 3.1% with 1583 reflexions) is indeed $(NH_4)_3PO_4$. $3H_2O$ and not $(NH_4)_2HPO_4$. NH_3 . $3H_2O$. The stoichiometric coexistence of NH_4^+ and PO_4^{3-} is evident from (1) the hydrogen atom positions, (2) the close similarity of all P–O bond distances and O–P–O bond angles, and (3) the structural equivalence of the three independent nitrogen atoms, each participating in four hydrogen bonds of similar lengths and of type $N \cdots O$ only. The water oxygen atoms form four, four and three hydrogen bonds, the last in two mutually exclusive positions of 0.5:0.5 occupancy.

Einleitung

In Erweiterung unserer Arbeiten über Säurehydrate und Oxoniumsalze haben wir uns auch der Untersuchung kristalliner Säure-Base-Systeme mit anderen Basen als Wasser zugewandt. Hierher gehört die Kristallstrukturanalyse von Triammonium-orthophosphat-trihydrat, mit der die Frage beantwortet werden sollte, ob die Formel (I) entsprechend der gegebenen Bezeichnung oder aber die Formel (II) den Aufbau

$$(NH_4)_3PO_4.3H_2O$$
 $(NH_4)_2HPO_4.NH_3.3H_2O$
(I) (II)

dieser Substanz richtig beschreibt. In Anbetracht der nur schwach sauren Natur sowohl des NH_4^+ -Ions als auch des HPO_4^{2-} -Ions und der generell unsicheren Übertragbarkeit von Verhältnissen in wässriger Lösung auf den festen Zustand fehlt einer *a priori* – Abschätzung der Lage des Gleichgewichts

$$NH_{4}^{+} + PO_{4}^{3-} = NH_{3} + HPO_{4}^{2-}$$

in diesem kristallinen Säure-Base-System die rationale Grundlage.

Experimentelles und kristallographische Daten

Zur Darstellung der Substanz wurden nach der Vorschrift von Schottländer (1894) drei Volumina $(NH_4)_2HPO_4$ -Lösung (1:10) mit drei Volumina NH_4Cl -Lösung (1:8) vermischt; die Mischung wurde auf 60° erwärmt und mit zwei Volumina konzentrierter NH_3 -Lösung (Dichte *ca.* 0,90 g.cm⁻³), die vorher mit einem Volumen Wasser verdünnt war, versetzt. Nach dem Abkühlen in einem verschlossenen Gefäss kristallisierten ca. 0,5 cm lange, klare vierflächige Prismen und auch nadelförmige strahlige Kristalle. Sie zerfallen an der Luft unter Ammoniakabgabe und wurden daher unter ihrer Mutterlauge sortiert und geschnitten und für die Röntgenuntersuchungen in dünnwandige Glaskapillaren eingeschlossen. Weissenberg- und Präzessionsaufnahmen ergaben monokline Symmetrie mit der zweizähligen Achse parallel zur Nadelachse und die Raumgruppe $P2_1/c$. Die Gitterkonstanten wurden aus diffraktometrisch bestimmten Winkeln θ , χ , φ von 21 Reflexen berechnet zu:

$$a = 6,686(3) \text{ Å}$$

 $b = 6,218(2)$
 $c = 22,349(7)$
 $\beta = 94,13(4)^{\circ}$.

Tabelle 1. Endgültige Ortskoordinaten der schweren	
Atome in Bruchteilen der kristallographischen	
Achsenlängen und Standardabweichungen in Klammer	n

	x	У	Z
Р	0,20982 (5)	0,36939 (5)	0,34192 (1)
O(1)	0,30374 (16)	0,44129 (17)	0,28448 (4)
O(2)	0,32911 (16)	0,46467 (17)	0,39728 (4)
O(3)	0,21415 (16)	0,12357 (15)	0,34679 (5)
O(4)	-0,00732 (15)	0,44949 (17)	0,34040 (5)
O(5)	-0,12362 (19)	0,26091 (19)	0,52996 (5)
O(6)	0,49355 (17)	0,36126 (17)	0,10423 (5)
O(71)	-0,27468 (35)	0,30850 (43)	0,41628 (11)
O(72)	-0,27172 (41)	0,39647 (54)	0,42559 (12)
N(1)	0,12965 (21)	0,37593 (20)	0,16797 (6)
N(2)	0,69120 (19)	0,37179 (19)	0,25110 (6)
N(3)	0,26124 (21)	0,17547 (23)	0,49246 (6)

Hier wie auch an anderen Stellen dieser Arbeit bedeuten die Zahlen in Klammern geschätzte Standardabweichungen in Einheiten des letzten angegebenen Stellenwertes. Die Dichtebestimmung nach der Schwebemethode in Chloroform/n-Hexan erwies sich wegen der Zersetzlichkeit und Löslichkeit der Kristalle als

^{*} Diese Arbeit ist eine gekürzte Fassung eines Teils der Dissertation von H. Wunderlich (1969). In einem grösseren zusammenhang sind die Ergebnisse auch auf dem VIII. Internationalen Kongress für Kristallographie in Stony Brook, New York, U.S.A., vorgetragen worden (Mootz, Altenburg, Fayos & Wunderlich, 1969).

Tabelle 2. Thermische Parameter (Å²) der schweren Atome mit Standardabweichungen in Klammern

Der Exponent des anisotropen Temperaturkoeffizienten lautet: $\left[-\frac{1}{4}(B_{11}h^2a^{*2}+2B_{12}hka^*b^*+\ldots)\right]$.

B_{11}	B ₂₂	B ₃₃	B_{12}	B ₁₃	B ₂₃
1,61 (1)	1,07 (1)	1,09 (1)	0,02 (1)	0,21(1)	-0.02(1)
2,67 (4)	2,41 (4)	1,51 (4)	-0,06(4)	0,68 (3)	0,26 (3)
2,59 (4)	2,02 (4)	1,59 (4)	-0,27(3)	-0.05(3)	-0.30(3)
2,79 (5)	1,24 (4)	2,48 (4)	0,00 (4)	0,12 (4)	-0.02(3)
1,86 (4)	2,38 (3)	2,44 (4)	0,38 (3)	0,27(3)	0,12 (3)
4,01 (6)	2,72 (5)	2,69 (5)	0,63 (4)	1,10 (4)	-0,14(4)
2,57 (5)	2,26 (5)	2,81 (5)	0,18 (3)	-0.05(4)	-0.21(4)
2,53 (9)	3,49 (10)	2,95 (10)	0,07 (9)	0,56 (8)	0,88 (9)
3,26 (12)	6,50 (17)	2,88 (11)	0,78 (11)	0,57 (9)	0,64 (11)
2,71 (5)	2,01 (5)	2,26 (5)	-0,11(4)	0,33 (4)	-0,12(4)
2,47 (5)	2,01 (5)	1,89 (5)	0,02 (4)	0,31 (4)	0,04 (4)
3,16 (6)	2,56 (5)	1,91 (5)	0,12 (5)	0,32 (4)	0,08 (4)
	B_{11} 1,61 (1) 2,67 (4) 2,59 (4) 2,79 (5) 1,86 (4) 4,01 (6) 2,57 (5) 2,53 (9) 3,26 (12) 2,71 (5) 2,47 (5) 3,16 (6)	B_{11} B_{22} 1,61 (1)1,07 (1)2,67 (4)2,41 (4)2,59 (4)2,02 (4)2,79 (5)1,24 (4)1,86 (4)2,38 (3)4,01 (6)2,72 (5)2,57 (5)2,26 (5)2,53 (9)3,49 (10)3,26 (12)6,50 (17)2,71 (5)2,01 (5)2,47 (5)2,01 (5)3,16 (6)2,56 (5)	B_{11} B_{22} B_{33} 1,61 (1)1,07 (1)1,09 (1)2,67 (4)2,41 (4)1,51 (4)2,59 (4)2,02 (4)1,59 (4)2,79 (5)1,24 (4)2,48 (4)1,86 (4)2,38 (3)2,44 (4)4,01 (6)2,72 (5)2,69 (5)2,57 (5)2,26 (5)2,81 (5)2,53 (9)3,49 (10)2,95 (10)3,26 (12)6,50 (17)2,88 (11)2,71 (5)2,01 (5)2,26 (5)2,47 (5)2,01 (5)1,89 (5)3,16 (6)2,56 (5)1,91 (5)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

relativ ungenau und führte zu dem Wert $D_m = 1,42$ g.cm⁻³. Mit vier Formeleinheiten (NH₄)₃PO₄.3H₂O bzw. (NH₄)₂HPO₄.NH₃.3H₂O (M = 203,1) in der Elementarzelle (V = 926,7 Å³) ist die berechnete Dichte D_x=1,456 g.cm⁻³ und F(000)=440.

Tabelle 3. Endgültige Ortskoordinaten der Wasserstoffatome in Bruchteilen der Achsenlängen und geschätzte Standardabweichungen in Klammern

Erster Index weist auf die Zugehörigkeit zu N(1), N(2), N(3), O(5), O(6) und O(7) hin.

	x	У	Z
H(11)	0,2401 (34)	0,3924 (32)	0,1471 (10)
H(12)	0,1802 (31)	0,4041 (34)	0,2084 (9)
H(13)	0,0051 (38)	0,4696 (38)	0,1592 (10)
H(14)	0,0738 (33)	0,2433 (36)	0,1616 (10)
H(21)	0,7833 (33)	0,4036 (34)	0,2800 (10)
H(22)	0,5796 (32)	0,4121 (34)	0,2702 (10)
H(23)	0,7159 (29)	0,4735 (36)	0,2212 (10)
H(24)	0,6976 (31)	0,2259 (33)	0,2383 (9)
H(31)	0,1485 (28)	0,2247 (36)	0,5082 (9)
H(32)	0,3031 (30)	0,2684 (39)	0,4630 (11)
H(33)	0,3536 (30)	0,1673 (40)	0,5202 (10)
H(34)	0,2391 (33)	0,0352 (32)	0,4753 (9)
H(51)	-0,2036 (42)	0,3109 (45)	0,4935 (12)
H(52)	-0,1780 (45)	0,3581 (41)	0,5553 (13)

Tabelle 3 (Fort.)

	x	У	Z
H(61)	0,5811 (35)	0,4568 (37)	0,1186 (11)
H(62)	0,5490 (36)	0,2441 (46)	0,1080 (13)
H(71)	-0,1842 (48)	0,3925 (50)	0,3987 (14)
H(72)	-0,3897 (52)	0,3868 (49)	0,4095 (15)

Die Abmessungen des zur Sammlung der Intensitätsdaten verwendeten Kristalls betrugen etwa $0.3 \times$ 0.3×0.3 mm; als Strahlung diente Cu Ka ($\mu = 27.9$ cm⁻¹), als Instrument ein automatisches Einkristalldiffraktometer (AED nach W. Hoppe der Fa. Siemens) im $\theta/2\theta$ -Betrieb. Zur Kontrolle und Verbesserung der Genauigkeit wurde der Datensatz dreimal aufgenommen, und zwar zweimal in derselben asymmetrischen Einheit des reziproken Gitters und einmal nicht ganz vollständig in einem hierzu symmetrieäguivalenten Viertel der Grenzkugel ($\theta_{max} = 70^\circ$). Nach der Datenreduktion (ohne Absorptionskorrektur) und Mittelung über die Mehrfachbeobachtungen lagen 1737 unabhängige Strukturamplituden vor, von denen auf Grund eines zählstatistischen Kriteriums 150 als nicht beobachtet eingestuft und insgesamt 1560 dreifach gemessen waren. Für diese betrugen die R-Faktoren zwischen

Tabelle 4. Thermische Parameter (Å²) der Protonen mit geschätzten Standardabweichungen in Klammern

Der Exponent des anisotropen Temperaturfaktors lautet: $\left[-\frac{1}{4}(B_{11}h^2a^{*2}+2B_{12}hka^*b^*+\ldots)\right]$.

	B_{11}	B ₂₂	B ₃₃	B ₁₂	B ₁₃	B ₂₃
H(11)	5.6 (13)	2.1 (10)	3.3 (10)	1.0 (9)	1.3 (9)	-0.1(8)
H(12)	2.9 (10)	3.8 (11)	2.7 (10)	0.5 (8)	0.1(8)	0.4(8)
H(13)	6.3 (14)	2.5 (11)	4.6 (12)	0.8 (10)	-0.7(10)	-0.4(9)
H(14)	4.4 (11)	4.0 (13)	2.6 (10)	-0.1(9)	0.1 (9)	-0.8(8)
H(21)	3,9 (12)	4,4 (12)	2,7 (10)	-0.2(10)	-0.4(9)	0.1(10)
H(22)	3,6 (12)	2,2 (10)	5,2 (13)	-0.4(9)	1,3 (10)	1.0 (9)
H(23)	3,0 (10)	3,2 (11)	5,2 (12)	1,0 (9)	1,0 (9)	0.3 (10)
H(24)	4,0 (10)	3,5 (11)	1,5 (9)	0,0 (7)	-0.2(7)	-0.2(7)
H(31)	2,0 (9)	5,6 (13)	1,8 (9)	1,0 (9)	-0,1(8)	1,0 (8)
H(32)	1,8 (9)	4,9 (13)	4,6 (12)	1,0 (9)	-0,6(9)	-0,6 (9)
H(33)	2,2 (10)	5,5 (13)	3,3 (11)	-0,3(10)	-0,7(8)	-0.4(10)
H(34)	5,3 (12)	2,0 (9)	3,2 (10)	0,1 (9)	-0,2(9)	-1.0(8)
H(51)	7,2 (16)	4,4 (13)	4,6 (14)	-0,7(13)	0,6 (12)	-0.3(11)
H(52)	8,1 (18)	4,1 (15)	6,4 (17)	-0,8(12)	1,4 (13)	1,0 (12)
H(61)	4,9 (13)	2,4 (11)	6,2 (14)	-1,0(10)	-0,7(11)	-0.1(10)
H(62)	3,3 (12)	7,3 (18)	4,9 (14)	0,5 (11)	-0,6(10)	0,9 (11)
H(71)	7,0 (16)	7,0 (21)	6,2 (18)	1,0 (14)	-0,5(14)	-0,2(14)
H(72)	9.2 (21)	8.0 (22)	6.4(20)	-1.0(17)	12(16)	-10 (16)

den Einzelmessungen aus jeweils einem der drei Datensätze und den Mittelwerten 1,8, 1,9 und 2,2%. Die mittlere Abweichung der Einzelmessung vom Mittelwert als Funktion des Mittelwerts zeigt Fig. 1.

Strukturbestimmung und Verfeinerung

Das Phosphoratom und die sieben Sauerstoff- und

drei Stickstoffatome der asymmetrischen Einheit wurden nach der Schweratommethode in ihrer üblichen Anwendung lokalisiert. Die Unterscheidung zwischen den Sauerstoff- und Stickstoffatomen ausserhalb der PO₄-Gruppe erfolgte während der Verfeinerung an Hand der thermischen Parameter und Höhen der Dichtemaxima in Verbindung mit einer Analyse des Systems der Wasserstoffbrücken. Die getroffene Zu-

Tabelle 5. Beobachtete und berechnete Strukturfaktoren

Die drei Spalten bedeuten jeweils l, $10F_o$ und $10F_c$. Reflexe mit Extinktionskorrektur sind mit einem E und nicht beobachtete Reflexe mit einem Stern markiert.

-8.0.L 278 288 151 -184	20 103 109 1.C.L 0 101 179	e 10+ 11 7 57 -58 8 263 -258 5 142 138	-2,1,1 23 125 -120 1 241 -275 24 49 -48 21179 -1202E 25 49 47 3 280 294 26 84 -86	C 214 -216 1 74 74 2 20 -20	21 128 119 22 36 -35 28 14 -18 22 51 -58 23 258 -246 21 16 17 23 129 -3 24 26 -27 51 35 139 13 5-3-1
-7,8,L 45 -48 255 247	2 626 651 4 470 -476 61035 1084 8 160 173	E 10 65 60 E 11 50 -92 E 12 30 30 13 140 -13	4 339 -331 5 377 389 2,1,L 6 245 245 0 172 -178 7 197 186 1 158 -143	4 39 36 5 8* 9 6 78 -68 7 64 65	-3+2+L 26 53 -51 0 54 52 L 72 75 L 37 40 2 62 60 L 1+2+L 2 31 31 3 150 147 6 72 -74 3 163 97
132 -59 44 42 147 144 21 -24	10 222 -226 12 138 135 14 469 482 16 225 -224	14 104 -102 15 7* -8 -6.1.L	8 53 -91 2 253 -248 9 461 -396 3 29 41 10 157 -186 4 290 256 11 302 291 5 235 230	8 10+ 13 9 74 71 10 105 180 11 120 -119	4 71 -65 1 243 257 4 160 11 5 155 196 2 25 15 5 297 -361 6 177 176 3 136 156 6 146 141 7 217 -218 4 296 -272 7 265 218
21 -25 -6,0,L 376 -310	18 362 -372 20 237 229 22 21 23 24 33 -49	2 22 -83 3 93 -57 4 139 -138 5 20 76	12 403 407 6 32 33 13 87 -88 7 576 582 14 269 -266 8 36 -36 15 157 159 9 76 -76	12 139 -144 E 13 79 83 14 39 -41 15 25 -18	8 12° -4 5 361 -351 8 43 42 9 226 224 6 3° 3 9 226 223 10 120 123 7 507 490E 10 68 -73 11 83 82 8 467 -464 11 120 -120
76 64 121 126 237 -200 304 255	26 108 108 2,0,L 2 90 86	e 111 107 7 37 38 e 32 29 5 53 -52	16 170 -14 10 303 298 17 170 -23 11 368 -364 18 260 259 12 305 -299 19 142 -141 13 135 123	16 97 98 7,1,L 8 25 -23	12 5* -1 9 117 118 12 33 36 13 146 -133 10 141 -130 13 6* -3 14 36 -33 11 142 -140 14 52 -43 15 216 212 12 172 173 15 175 175
168 183 341 - 346 33 - 30 176 176	4 119 -76 4 87 -99 8 380 379 10 187 192	10 209 -201 11 195 147 12 85 83 13 28 -30	20 85 -83 14 354 -363 21 95 57 15 98 94 22 163 -166 16 23 -23 23 152 151 17 109 111	1 25 32 2 112 -114 3 87 89 4 177 179	16 200 -204 13 30 4 16 20 10 17 205 204 14 53 57 17 104 -102 18 34 25 15 282 274 18 20 -20 19 37 -243 14 196 -13 19 23 24
-5,0,L 132 -119 98 -56	12 453 -474 14 280 -201 16 299 258 18 98 -87	14 33 -33 15 50 -52 16 165 -165 17 35 -31	24 168 168 18 84 84 25 24 -24 19 99 -99 26 26 -27 26 244 -242 21 79 74	5 29 -27 6 40 43 7 109 -109 8 148 -151	20 0° -0 17 48 51 21 51 52 18 47 -49 6,2,L 22 149 -151 19 153 -151 0 129 134 23 71 73 20 64 64 1 15 -14
544 571 318 -327 357 -364 298 306	20 177 -174 22 164 161 24 272 -269	18 74 -70 19 116 115 -5,1,L	-1,1,L 22 150 13 1 215 -195 23 73 -69 2 67 -56 24 17 17 3 147 -137 25 33 32	9 22• 26 16 36 41 11 42 42	24 36 -38 21 90 86 2 52 -47 22 18 -19 3 141 157 -2,2,L 23 80 1 4 260 12 1 326 -341 24 93 80 5 34 -33
112 187 185 -184 108 183 22 14	3.0.L 0 25 - 32 2 553 - 580 4 864 919	2 345 338 3 82 -79 E 4 56 -94 E 5 41 34	4 499 -492E 5 3C7 324 3+1+L 6 566 575E 0 324 326 7 123 94 1 314 292	-7,2,L 2 109 -114 3 88 -91 4 65 -60	2 381 387 25 32 -35 6 43 43 3 359 348 7 171 -171 4 115 119 2,2,L 8 83 82 5 273 -249 8 86 77 9 193 191
-4.0.L 115 119	6 353 -358 8 293 -296 10 258 237 12 118 123	6 25 15 7 252 255 8 421 428 5 303 -307	6 86 -92 2 274 261 9 12* 16 3 241 -235 10 189 -182 4 285 276 11 147 -128 5 8* 6	5 153 151 6 14* 15 7 19 -18 8 17 14	6 406 415 1 160 -174 10 58 53 7 42 30 2 170 -164 11 35 -30 8 25 -23 3 72 78 12 75 74 9 38 -35 4 116 -114 13 41 -45
74 -79 579 603 402 -405	16 232 228 18 105 106 20 273 -268	12 49 -48 13 178 176	12 181 174 6 523 553 13 63 58 7 153 -160 14 267 266 8 106 -111 15 202 -201 9 177 178	9 41 -41 10 101 -95 11 41 43 12 35 -35	10 7° 2 5 79 -49 14 110 -18 11 274 281 6 185 186 15 96 99 12 372 303 7 78 -80 13 128 113 8 56 64 7,2,L
468 474 188 -185 41 47 241 238	24 72 76	15 126 -120 16 131 -129 17 16* 1	10 304 -312 10 21 -10 17 391 404 11 79 78 18 257 268 12 255 252 19 14 -6 13 31 35 26 264 263 14 81 64	-6,2,L 2 47 41	14 133 133 9 66 62 6 21 26 15 86 -76 10 309 -308 1 91 -99 16 59 -6 11 266 275 2 32 -33 17 35 37 12 98 54 3 41 -43 14 135 37 12 98 54 3 41 -43
76 -79 204 -283 -3,0,L	2 291 -300 4 99 -96 6 291 300 8 408 -414	19 157 155 20 175 174 21 31 -36 22 99 -12	21 107 -106 15 101 -192 22 70 -12 16 218 -220 23 15* -14 17 146 147 24 26 -26 10 136 140	4 118 -114 5 9* -4 6 12* 5 7 92 96	19 22 25 14 28 -27 5 67 71 26 42 39 15 119 -127 6 58 53 21 110 -15 16 48 51 7 32 -37 22 49 -47 17 84 79 8 48 -51
102 175 325 -307 026 -634(453 466	10 203 190 12 478 503 E 14 45 -23 16 154 -163	-4,1,L 1 58 47 2 417 429	25 83 85 19 89 90 26 121 123 26 47 46 21 46 -50 0,1,1 22 120 -121	8 67 -69 9 150 -140 10 8* -1 11 119 113	23 119 120 18 84 82 9 28 -27 24 36 36 19 99 9 10 49 3 25 88 90 26 79 -3 21 46 -58 -7,11
132 121 254 -250 362 369 102 58	18 194 196 20 72 77 22 115 -121	3 268 -279 4 62 66 5 74 69 6 32 33	1 198 308 23 52 53 2 398 407 24 76 73 3 473 -469E 4 383 -388 4,1,L	12 14 -7 13 238 235 14 20 17 15 135 -136	-1,2,L 22 40 4 2 71 -77 1 336 -332 23 247 247 3 88 -90 2 385 -365 24 63 64 4 49 46 3 461 -561E 5 46 79
287 -228 285 363 194 153 28 -13	5,0,L 0 56 -54 2 150 -156 4 492 -511	7 181 183 8 387 388 5 182 -182 18 236 229	5 61 -66 6 292 297 6 179 -159 1 5* 4 7 342 -335 2 112 163 8 115 115 3 209 -199	16 68 -63 17 56 -58 18 2• 7	4 137 -128 3,2,L 6 44 44 5 376 -380 0 445 452 7 159 158 6 254 247 1 59 -2 8 119 -118 7 415 438 2 107 -102 9 131 -129
-2,0,L 208 188 561 -5468 228 -241	8 119 113 10 408 -416 E 12 100 95	12 339 -342 12 316 334 14 257 266	y ja -45 9 275 -271 10 302 -296 5 220 226 11 61 -73 6 255 251 12 442 -445 7 75 -76 13 243 296 8 13 186	2 129 127 3 86 -88 4 38 -29	0 423 406 3 404 -483 10 140 130 9 59 46 4 160 -153 16 104 -101 5 389 394 -6,3,L 11 452 -466 6 50 -50 2 28 -21
18 -6238 198 197 225 -226 463 -473	E 16 165 -166 18 96 98 20 143 141	16 192 191 17 27 24 18 31 -34 19 23 27	14 328 321 9 407 -420 15 197 -191 10 340 -239 16 178 176 11 247 251 17 154 -152 12 134 136	6 35 39 7 322 328 8 50 -51 9 17* -16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
65 70 11• 8 55 -60 151 155	6,6,L C 158 162 2 160 159 4 271 -273	20 22 -18 21 52 -51 22 56 58 23 116 -118	18 155 -153 13 78 80 19 215 215 14 218 219 20 203 198 15 61 -59 21 138 -137 16 53 -46	10 187 -108 11 266 -208 12 81 81 13 8* 8	17 152 -153 12 37 -36 8 26 28 18 149 155 13 54 -53 9 58 52 19 316 321 14 78 -81 10 136 -135 20 0° -2 15 232 -225 11 93 -91
129 -120	6 247 -242 8 279 274 10 200 -195 12 138 -136	24 139 -142 -3,1,L 1 377 379	22 88 81 17 60 -61 23 70 -65 18 39 -29 24 57 -93 19 44 48 25 70 79 20 164 164	14 41 -39 15 62 58 16 30 -29 17 113 -111	21 97 -98 16 170 -164 12 135 134 22 134 -14 17 126 121 135 134 23 171 -169 18 136 132 14 74 24 43 -38 19 70 72 15 60 -2
194 1077E	16 111 -113 7.0.L	3 448 -448 4 218 230 5 269 -281 6 142 -338	20 144 145 21 1/8 -1/6 22 177 -174 1,1,L 0 461 -460E 5,1,L 1 465 445E 0 05 -54	18 66 -61 19 51 54 26 44 43 21 32 33	25 82 84 20 71 88 16 110 -16 26 68 69 21 167 -166 27 180 -7 -5,3,L 0,2,L 23 140 -15 2 140 153 4 133 47
195 386 188 -251 172 -185 121 434	2 114 113 4 166 163 6 124 -128 8 85 -80	7 106 -105 8 356 -354 9 193 199 10 257 267	2 360 356 1 11° -5 3 85 -65 2 235 235 4 304 318 3 262 -264 5 413 -463E 4 245 -239	-4,2,L 1 98 92 2 173 -169 3 192 194	2 598 -558E 4,2,L 4 196 -197 11136 1224E 6 88 51 5 38 -36 3 143 139 1 231 238 6 163 -164 4 405 -465 2 112 108 7 143 -135
80 -409 50 -249 24 223 81 77	10 43 41 12 64 -79 8.0.L	11 107 59 12 253 255 13 108 -103 14 100 -101	61224-1311E 5 24 31 7 355 376 6 238 -234 8 125 -177 7 242 245 9 221 -268 8 191 192	4 74 76 5 68 -61 6 146 133 7 257 -259	5 168 -221 3 65 67 8 267 271 6 155 -163 4 40 37 9 139 -8 7 214 -194 5 28 -14 10 237 -239 8 93 -52 6 125 129 11 46 -46
1,0,L 144 -513E 157 579E	-8,1,L 2 30 -36	15 74 -74 16 162 164 17 153 -200 16 12 -37	10 34 37 9 162 -166 11 157 143 10 19 -17 12 258 -250 11 20 16 13 68 65 12 69 -70	8 104 108 9 231 222 10 202 -209 11 145 -143	9 111 -103 7 106 102 12 75 -73 10 56 54 8 210 -215 13 47 -46 11 377 -374 9 262 -257 14 217 218 12 40 -40 10 106 -107 15 81 76
68 -268 32 774E 36 -40 88 -729F	4 132 142 5 69 -72 -7,1,1	20 144 -141 21 22 33 22 44 45 23 24 -22	15 41 35 14 165 160 16 200 192 15 149 -142 17 400 -423 16 60 -60 18 402 -414 17 31 27	13 162 -154 14 62 -65 15 154 155 16 78 -84	14 73 72 12 44 7 17 79 72 15 113 113 13 165 167 19 136 -168 16 154 -116 14 26 25 19 215 -216 17 366 -163 134 -4
16 314 82 274 97 -401 04 100	2 73 -70 3 29 -26 4 86 86 5 31 -32	24 56 98 25 120 -124	19 146 146 18 158 -148 20 85 -86 19 77 79 21 79 80 22 208 202 6,1,L	17 101 -102 18 48 48 19 100 -99 20 108 -113	10 172 173 16 90 -60 -4.3.1 14 22 25 17 123 -125 1 207 -211 26 55 62 18 7 -53 2 205 218 21 214 211 15 38 26 3 73 67

1828

Tabelle 5 (Fort.)

-4,3,1 12 77 76 4 171 -171 11 171 157	12 64 63	-3,4,1 1 160 164	9 197 -195	8 224 -226 9 10• -5	3 50 -14	8 23 15 9 45 48	2,6,L 7 53 -55
+ 272 - 273 13 135 -125 7 37 67 14 317 318	16 51 -53	3 7 7 7	12 194 193	-6.5.1	6 14 -15	6.5.1	2 16• -18
8 162 163 15 70 -12 5 135 126 16 150 21	10 43 -47	5 165 -168	14 290 -291 15 4 4	2 236 235	e 386 -401 9 37 32	0 149 153	4 65 -65 5 147 -150
10 85 68 17 100 105	20 167 168	7 19 10 8 366 -375	16 14* -5 17 18 -11	4 66 67 5 24 -29	10 47 48	2 0+ -2	6 197 -189 7 168 159
12 423 -425 19 101 104 13 175 -173 20 165 164	5,3,L C 61 61	9 116 -120 10 11• 15	18 106 109 19 53 -51	-5,5,L	12 165 157 13 131 -127	-4,6,L 1 61 62	8 46 -46 7 164 168
14 121 124 21 75 7º 15 15 -9 22 7• -7	1 155 -153 2 246 253	11 29 -33 12 239 245	20 154 -154 21 20 4	2 174 -167 3 59 103	14 14C -136 15 41 -4C	2 78 78 3 169 -172	10 7• -3 11 245 -251
1e 15 15 23 51 50 17 13E 129 24 169 -165	2 134 132	13 25 -35	22 65 -61	5 36 33	16 101 -104	4 15• -14 5 30 29	12 131 -133
10 44 -47 19 17 14 1,3,L	6 173 -172	16 211 -210	0 356 365	7 70 -73	19 61 -63	7 57 97	3.6.1
21 76 -79 1 61 -73	8 205 210	18 366 374	2 355 - 256	9 81 83	1.5.1	9 29 -31	0 34 -33
3 20 -17	10 58 -97	20 1	4 21 -18	11 14 -14	0 197 200	-3.6.1	2 37 32
1 140 139 5 477 496 2 282 289 6 398 -417	12 100 -105	-2,4,L	6 506 538 7 67 68	13 4+ -1	2 53 -54 3 15+ 11	1 254 254 2 92 92	4 23 28 5 193 - 154
2 57 -57 7 302 -296 4 155 151 8 318 314	14 118 117 15 137 130	1 86 -86 2 66 -65	8 90 1 9 151 153	-4,5,L 1 152 -148	4 26C -265 5 210 204	3 19* 16 * 71 71	6 144 -18 7 25 -22
5 275 272 9 302 -313 6 152 -156 10 119 114	16 52 -47 17 63 67	3 159 161 4 180 -183	10 354 - 368 11 184 - 186	2 174 -175 3 12• 13	6 432 452 7 135 -134	5 164 -166	8 42 -44 9 65 71
7 46 46 11 160 157 8 285 -257 12 34 -32	6,3,L	5 126 -130 6 206 20e	12 378 393	4 14• -13 5 39 -41	8 52 53	7 172 170 8 78 78	10 30 -7
5 92 -52 13 114 117 16 85 50 14 65 65	1 51 -49	7 176 181 8 44 -47	15 34 -32	7 82 -82	11 46 42	10 27 29	12 42 -46
12 15+ -12 16 381 392	3 51 -92	10 478 -507	17 39 -35	9 3+ -0 10 9+ -11	13 21 -21	12 18 16	3 79 79
14 175 -175 18 219 -223 15 78 -71 19 125 -120	5 49 -47	12 175 186	19 35 34 20 11+ 13	11 61 64	15 93 -96	-2.6.L	2 47 43
16 81 85 20 30 -30 17 59 56 21 49 -45	7 53 -53 8 28 -27	14 225 226 15 50 45	21 14+ -16	13 126 -127 14 51 -49	17 91 92 18 154 150	1 24 21 2 47 -45	4 58 58 58 5 23 -15
18 89 -95 22 131 132 19 165 165 23 172 167	9 24 -27 16 133 133	16 159 -16C 17 5• 3	0 343 351	15 47 48 16 166 -170	19 169 -108	3 27 -23 4 59 60	7 38 32
20 46 -47 24 83 -85 21 95 -58	11 127 127 12 106 -108	18 68 -72 19 141 -144	1 260 266 2 172 175	-3,5,L	0 335 355	5 126 -124 6 73 -69	8 25 27
22 41 43 2,3,L 23 7• 3 0 258 -256	13 58 -59	20 185 190	3 59 62	1 28 -24 2 185 189	2 206 212	7 152 154	-3,7,1
-2,3,L 2 324 -329	e 11• -11	-1.4.1	6 161 162	4 268 -275	4 197 -201	10 66 69	3 123 127
2 266 -277 4 60 55	2 70 -70	1 265 253	8 265 274	6 188 191 7 32 -29	6 59 -61	12 32 -34	-2,7.L
4 138 136 6 214 -212 5 216 -216 7 6* 8	4 96 103 5 134 141	3 116 120	10 120 -121	8 192 191 9 61 -63	8 279 289 9 31 -31	14 25 -27 15 108 112	2 175 174
6 302 366 8 45 45 7 36 33 9 254 -250	6 76 76 7 59 63	5 31 -32 6 350 -353	12 67 68 13 87 87	10 104 -106 11 10• 4	10 221 -221 11 102 103	-1,6,L	4 32 -31 5 78 77
8 31 29 10 261 258 9 222 -220 11 113 109	-6,4,L	7 24 5 8 435 446	14 224 223 15 108 101	12 33 29 13 10+ -4	12 12• -11 13 2• 5	1 40 -38 2 73 -76	6 91 -91 7 133 -138
10 314 -318 12 44 -41 11 75 -73 13 38 -35	2 275 276	9 324 326	16 275 -274	14 251 253	14 173 173	3 31 28	8 132 134
13 272 275 15 220 -220	5 87 -85	12 339 -352	19 47 46	17 17 19	17 62 62	6 60 59	1 38 -40
15 157 -157 17 46 44 14 54 -41 18 181 182	7 40 -1 8 217 214	14 119 117	4.4.1	-2-5-1	3.5.1	8 65 -68	3 92 -54
17 181 -181 19 74 71 18 85 54 20 104 -105	9 46 -48 10 89 -90	16 70 66 17 26 -31	0 253 -255 1 66 -68	1 172 174 2 352 363	0 64 -62	10 37 34	5 129 129 6 116 -111
19 97 55 21 157 -155 20 134 -138 22 69 65	11 2C -22 12 85 -87	18 269 -267 19 50 51	2 192 195 3 16* -13	3 31 -27 4 95 -95	2 223 224 3 4* -1	12 12+ 4 13 111 -113	7 125 -123 8 135 133
21 11* 13 23 21 -23 22 138 -140	-\$,4,L	20 154 157 21 25 24	4 57 -55 5 61 -59	5 13• 14 6 240 -249	4 27 -25	14 22 18 15 11 16	9 39 4C 10 147 147
24 110 120 0 118 121	3 105 105	23 27 26	7 135 140	8 279 291	6 174 -175 7 76 79	16 26 25	0,7.L
-1+3+L 2 87 -90	5 21 -18	0.4.L	9 40 -43	10 36 -36	9 120 -8	d 21 28	2 15 6
2 64 59 4 212 -218 3 101 -55 5 43 -42	7 14+ 17 8 175 174	1 239 246 2 357 353	11 45 -47	12 182 -183	11 S* 7 12 217 -216	2 36 35 3 13• 17	4 95 93
4 260 -250 6 134 134 5 172 -175 7 176 170	9 27 25 10 139 140	3 45 -48 4 325 327	13 47 -44 14 173 177	14 277 286 15 61 -62	13 43 45 14 67 70	4 67 -66 5 81 77	6 65 61 7 96 94
6 331 334 8 267 -274 7 423 431 9 34 -33	11 54 -53 12 54 -53	5 12• 11 6 272 -27e	15 73 70 16 90 87	16 136 137 17 24 -36	15 43 44	6 16• 14 7 101 -99	8 106 -166 9 123 -123
e 205 206 10 88 -87 \$ 125 -127 11 132 -126	13 64 64	8 32 -32	17 53 49	18 149 -154 19 84 91	17 50 -53	8 62 61 9 127 -128	10 62 63
11 247 -248 13 64 65 12 56 47 14 84 87	16 185 187	10 357 358	0 161 -157	-1,5,L	0 302 - 306	11 186 181	C 27 25
13 91 50 15 59 -59 14 166 164 16 210 -221	-4.4.1	12 423 -435	2 102 -101	2 142 -143	2 91 91	13 155 -151	2 89 -89
15 55 54 17 159 -168	1 109 112	14 79 -76	4 204 202	4 63 61	4 193 192 5 130 -126	15 15 10	4 166 -163
17 164 -164 19 113 116 18 66 67 20 109 105	3 125 -124 4 234 240	16 158 153 17 85 -85	6 219 -219 7 20 -17	6 413 -438 7 143 146	6 20 -18 7 46 -50	1.0.L	6 179 177 7 82 79
15 26 -23 21 120 -4 26 77 76 22 65 -66	5 14 -11 6 38 42	18 154 -152 19 75 72	8 76 -74 9 20 -16	8 112 118 9 47 -49	e 105 -103 9 92 97	0 71 -70	8 140 -12
22 1 15 - 103 4,3,L	e 271 -276	20 177 -175	11 74 -78	10 143 142	11 55 -51	3 16 -16	2.7.L
24 91 -51 1 350 361 2 84 81	10 140 140	23 24 23	13 15 11	13 31 31 14 78 -AM	13 20 20	6 71 - e7 7 e5 7a	1 21 21
5,3,1 3 147 140 1 268 240 4 357 -370	12 92 89	1,4,L 0 60 55	6,4,L	15 125 12P 16 177 179	5,5,1	P 26 28 9 144 -141	3 75 81
2 536 548E 5 41 -33 3 91 -61 6 152 152	14 187 -186	1 153 -147 2 68 -58	0 13° 8 1 126 125	17 83 -85 18 11* -4	C 96 56 1 77 - 79	10 59 -51 11 7* -2	5 36 -38
4 242 -278 7 1e -e 5 15 -9 8 100 153	16 160 165 17 21 -32	3 6• -10 4 409 418	2 227 -230	19 36 36 28 49 -53	2 201 -204	12 30 -2 13 118 119	1 45 -12
e 115 117 5 173 162 7 35 77 10 401 -418	16 152 156 15 117 118	5 158 -152	4 122 122	0,5,1	5 5 6	14 62 83 15 69 -73	C 46 -46
e 537 254 11 51 -89 5 348 348 12 10* 1		8 247 -262	6 96 101 7 11+ -9	2 70 -4	7 24 -23	10 14 13	2 125 127

ordnung ergab mit anisotropen thermischen Parametern einen *R*-Faktor von 7,7% und die in Fig. 2 gezeigte Elektronendichteverteilung.

Mit der Differenz-Fourier-Technik konnten hierzu die Positionen der 18 unabhängigen Wasserstoffatome gefunden werden (Fig. 3). Die Einbeziehung ihrer zunächst konstant gehaltenen Streubeitrage in eine weitere Verfeinerung der Schweratome reduzierte den *R*-Faktor auf 4,9% und nach der Entfernung von fünf Reflexen mit stark asymmetrischen Impulszahlen auf den Flankenstrecken und einer empirischen Extinktionskorrektur der 31 stärksten Intensitäten (Fig. 4) auf 3,6%. Eine isotrope Verfeinerung der Wasserstoffatome ergab 3,4% und eine abschliessende anisotrope Verfeinerung aller Atome gleichzeitig 3,1% für die verbliebenen 1583 beobachteten Reflexe und 3,3% bei Einschluss auch der 149 nicht beobachteten Reflexe.

Für die abschliessende Verfeinerung wurde wegen der hohen Zahl der zu variierenden Parameter (271) die Blockdiagonal-Näherung des least-squares-Verfahrens verwendet. Die Besetzungsfaktoren der beiden Lagen O(71) und O(72) des fehlgeordneten Wasser-Sauerstoffatoms O(7) wurden bei 0,5 fixiert, nachdem die vorausgegangene full-matrix-Verfeinerung keine signifikanten Abweichungen von diesem Wert ergeben hatte. Bei allen Berechnungen wurden die Atomformfaktoren von Hanson, Herman, Lea & Skillman (1964) für P, N, und O und von Stewart, Davidson & Simpson (1965) für H benutzt. Der Realteil der anomalen Dispersion des Phosphoratoms ($\Delta f'=0,2$) wurde berücksichtigt. Die Bewichtung der Strukturamplituden

Tabelle 6. Bindungslängen und Bindungswinkel in den drei Ammoniumionen

Die Standardabweichungen betragen 0,02 Å und 2°. Die korrigierten Abstände sind das Resultat einer Korrektur auf 'riding motion'.

Bindung	Unkorrigiert	Korrigiert	Winkel	
N(1) - H(11)	0.91 Å	0.92 Å	H(11) - N(1) - H(12)	103°
N(1) - H(12)	0.96	0.97	H(11) - N(1) - H(13)	121
N(1) - H(13)	1.02	1.06	H(11) - N(1) - H(14)	111
N(1) - H(14)	0.91	0.93	H(12) - N(1) - H(13)	108
N(2) - H(21)	0.88	0.91	H(12) - N(1) - H(14)	115
N(2) - H(22)	0.92	0.94	H(13) - N(1) - H(14)	100
N(2) - H(23)	0.94	0.96	H(21)-N(2)-H(22)	99
N(2) - H(24)	0.95	0.96	H(21) - N(2) - H(23)	103
N(3) - H(31)	0.91	0.92	H(21)-N(2)-H(24)	113
N(3) - H(32)	0.93	0.94	H(22)-N(2)-H(23)	110
N(3)-H(33)	0.85	0.88	H(22)-N(2)-H(24)	117
N(3) - H(34)	0.96	0.99	H(23) - N(2) - H(24)	114
	-,	•,• •	H(31) - N(3) - H(32)	111
Mittelwert			H(31) - N(3) - H(33)	109
NH	0.93	0.95	H(31) - N(3) - H(34)	111
		-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	H(32) - N(3) - H(33)	108
			H(32) - N(3) - H(34)	109
			H(33)–N(3)–H(34)	109
			Mittelwert	
			HH	110

Tabelle 7. Bindungslängen und Bindungswinkel in den drei Wassermolekülen

Die Standardabweichungen betragen 0,02 bis 0,03 Å und 2 bis 3°. Die korrigierten Abstände sind das Resultat einer 'riding motion'-Korrektur.

Bindung	Unkorrigiert	Korrigiert	Winkel	
O(5)—H(51)	0,99 Å	1,02 Å	H(51)-O(5)-H(52)	95°
O(5) - H(52)	0,92	0,95	H(61) - O(6) - H(62)	106
O(6)—H(61)	0,88	0,92	H(71) - O(71) - H(72)	102
O(6)-H(62)	0,82	0,85	H(71) - O(72) - H(72)	111
O(71)-H(71)	0,91	0,95		
O(71)-H(72)	0,91	0,96	Mittelwert	
O(72)-H(71)	0,87	0,89	НН	103
O(72)-H(72)	0,85	0,89		
Mittelwert				
0Н	0,90	0,93		

Γ	abelle	e 8	5. I	Bina	lungs	slängen	und	B	ind	ungs	wini	kel	im	Pł	losp	ha	tio	n
								_							· · ~ p			••

Die Standardabweichungen sind etwas kleiner als 0,001 Å und 0,1°. Die korrigierten Abstände sind das Resultat einer 'riding motion'-Korrektur.

109,9°
110,1
109.3
108.7
109.1
109.8
,-
109,5

Tabelle 9. Phosphe	n-Sauerstoff	bindungsabstä	nde (Å) au	sgewählter Kri	stallstrukture	en mit Moleküler	$n \ bzw.$ lonen $H_n PO_4^{(3-n)-} (n=1, 2)$	2,3)
Substanz		d(P-O bzv	v. P-OH*)		$\langle \sigma(d) \rangle$	$\langle p \rangle$	Korrektur	Literatur
H ₃ PO ₄	1,496	1,545*	1,545*	1,548*	0,003	1,534	ohne (rigid body: 1,542)	(a) (b)
2H3PO4. H2O	1,503 1,477	1,554* 1,542*	1,545* 1,557*	1,561* 1,554*	0,005	1,537	ohne	(2)
2H3PO4.H2O	1,483 1,503	1,551* 1,566*	1,564* 1,557*	1,555* 1,557*	0,006	1,542	riding motion (ohne: 1,531)	(p)
N ₂ H ₆ (H ₂ PO ₄) ₂	1,513	1,521	1,571*	1,580*	0,003	1,546	riding motion (ohne: 1,537)	(6)
N ₂ H ₅ H ₂ PO ₄	1,505	1,506	1,550*	1,573*	0,005	1,534	ohne	Ç.
$C_5N_3H_{11}(H_2PO_4)_2.H_2O_4$	1,5	00 (Mitte	lwerte)	1,562*	0,002	1,531	ohne	(<i>g</i>)
MgHPO4.3H2O	1,500	1,542	1,545	1,588*	0,002	1,544	ohne	(4)
C ₁₀ H ₃₀ N ₄ (HPO ₄) ₂ .6H ₂ O	1,517	1,518	1,529	1,589*	0,005	1,538	ohne	(<i>i</i>)
							(rigid body: 1,548)	(q)
C ₇ H ₁₂ N ₃) ₂ (HPO ₄) ₃ .6H ₂ O	1,508 1,502	1,525 1,513	1,534 1,522 1,521	1,564* 1,599* 1,603*	0,009	1,536	ohne	()
	+1C'I	01011	10061	C00'I	÷			
	(q) (<i>p</i>)	Cole (1966) Cruickshank	& Robinsor	1 (1966)	5) 2)	Lımınga (1965) Veidis & Palenik	(1969)	
	(3)	Mighell, Smit	h & Brown	(1969)	(4)	Sutor (1967)		
	(<i>e</i>)	Liminga (196	6)	(6)	89	Huse & Iitaka (19 Huse & Iitaka (19	(co) (69)	

erfolgte nach w=1 für $|F_o| < K$ und $w=K^2/|F_o|^2$ für $F_o \ge K$ mit K=10,0. Die endgültigen Atomparameter stehen in den Tabellen 1 bis 4, die beobachteten und mit diesen Parametern berechneten Strukturfaktoren in Tabelle 5.

Ergebnisse und Diskussion

Die in Fig. 3 bereits angedeutete und aus den Bindungslängen und Bindungswinkeln der Tabellen 6 und 7 eindeutig hervorgehende Zugehörigkeit der 18 unabhäng-

Fig. 1. Mittlere Abweichung der Dreifachbeobachtungen vom Mittelwert in Abhängigkeit von der Grösse des Mittelwertes. Die 30 kleinsten und 30 grössten $|F_o|$ -Werte wurden nicht berücksichtigt; die übrigen 1500 ergaben bei Zusammenfassung in Gruppen zu je 60 nach ansteigendem $|F_o|$ und bei gruppenweiser Mittelung zu $|\Delta F|$ und $|\overline{F}_o|$ die in der Figur gezeigten 25 Punkte. Zur Umrechnung auf absolute Skalierung sind Abzissen- und Ordinatenwerte mit 0,160 zu multiplizieren. Die Gestalt der Kurve durch die Punkte, insbesondere auch ihr Ansteig zu kleinen $|\overline{F}_o|$ -Werten, ist in Übereinstimmung mit der Untersuchung von Stout & Jensen (1968) zur Standardabweichung von Strukturamplituden aus Zählrohrmessungen.

Fig. 2. Elektronendichteverteilung der schweren Atome bei Blickrichtung gegen die positive y-Achse. Die Konturen beginnen bei 1 e.Å⁻³; das Inkrement beträgt 5 e.Å⁻³ für das Phosphoratom und 2 e.Å⁻³ für alle übrigen Atome. Wegen der Aufspaltung von O(7) auf die beiden in Blickrichtung übereinanderliegenden Positionen O(71) und O(72) ist die maximale Elektronendichte hier deutlich niedriger.

igen Wasserstoffatome zu *drei* Ammoniumionen und den drei Wassermolekülen wird durch die Formel (I) der Einleitung und die bisher benutzte Bezeichnung der Substanz richtig zum Ausdruck gebracht. Formel (II) ist dagegen auszuschliessen. Das sieht man auch an den P-O-Bindungslängen und O-P-O-Bindungswinkeln in Tabelle 8, die mit grössten Differenzen untereinander von nur 0,008 Å und 1,4° auffallend wenig streuen und damit das Vorliegen der PO₄-Gruppe als PO₄³⁻-Ion anzeigen und die Möglichkeit eines HPO₄²⁻-Ions ausschliessen.

Nach den in Tabelle 9 zusammengestellten Literaturdaten ist nämlich die Bindung P-OH in allen Spezies aus der Reihe $H_n PO_4^{(3-n)-}(n=1, 2, 3)$ im Mittel um *ca.* 0,05 bis 0,07 Å länger als die Bindung P-O, ein Unterschied, der an den hier vorliegenden, sehr genau bestimmten Bindungsabständen bei weitem nicht beobachtet wird. Der Mittelwert über alle vier Bindungen von korrigiert 1,546 Å stimmt mit der entsprechenden Zahl von 1,543 Å für dasselbe Ion PO_4^{3-} im MgNH₄PO₄.6H₂O (Whitaker, 1965) gut überein. Auf die angenäherte Konstanz dieses Mittelwertes von H₃PO₄ bis PO_4³⁻ wurde von Cruickshank & Robinson (1966) hingewiesen; sie zeigt sich in Tabelle 9 auch an den neueren Beispielen.

Durch ein komplexes System von Wasserstoffbrükken, an dem alle 18 unabhängigen Wasseratoffatome beteiligt sind, werden die verschiedenen Bausteine der Kristallstruktur dreidimensional vernetzt. Einzeldarstellungen zur Koordination der Ammoniumionen, der Wassermoleküle und des Phosphations geben die Fig. 5, 6 und 7; relevante interatomare Abstände und Winkel sind in den Tabellen 10 und 11 zusammengestellt. Die kleinsten intermolekularen Abstände, die keine Wasserstoffbrücken sind, betragen 3,161 Å für O...O und 3,229 Å für N···O, sind also deutlich länger als die längste Wasserstoffbrücke von 2,908 Å. Im einzelnen doniert jedes der drei Ammoniumionen vier und jedes der drei Wassermoleküle zwei Protonen. Als Akzeptoren fungieren nur Sauerstoffatome, und zwar von den Phosphat-Sauerstoffatomen O(2) viermal und O(1), O(3) und O(4) je dreimal und von den Wasser-Sauerstoffatomen O(5) und O(6) je zweimal und O(7)einmal.

Die Sonderstellung von O(2) stimmt mit der Beobachtung überein, dass der Bindungsabstand P-O(2)geringfügig grösser ist als die drei übrigen P-O-Abstände (Tabelle 8). Auch von den Wasserstoffbrücken

Fig. 3. Differenz-Fouriersynthese mit Wasserstoff-Maxima bei Blickrichtung gegen die positive y-Achse. Die Konturen beginnen bei 0,1 e.Å⁻³ und besitzen auch dieses Inkrement. Im übrigen ist die Darstellung komplementär zu Fig. 2; die Schweratomstruktur ist durch Striche für die kovalenten Bindungen angedeutet.

Tabelle 10. Geometrie der Wa	isserstoffbrücken
------------------------------	-------------------

Die Standardabweichungen betragen 0,002 bis 0,003 Å für $D \cdots A$, 0,02 bis 0,03 Å für $H \cdots A$ und 2 bis 3° für Winkel D- $H \cdots A$. *D* bezeichnet das Proton-Donoratom, *A* das Proton-Akzeptoratom.

$D-\mathrm{H}\cdots A$	A, in	n Punktla	age	$D \cdots A$	$\mathbf{H}\cdots \mathbf{A}$	$D-\mathrm{H}\cdots A$
$N(1) - H(11) \cdots O(6)$	<i>x</i>	v	z	2,908 Å	2,02 Å	168°
$N(1) - H(12) \cdots O(1)$	x	y	Z	2,804	1,85	174
$N(1) - H(13) \cdots O(3)$	-x	$\frac{1}{2}+y$	$\frac{1}{2}-z$	2,767	1,75	173
$N(1) - H(14) \cdots O(4)$	-x	$\bar{y}-\frac{1}{2}$	$\frac{1}{2} - z$	2,777	1,88	167
$N(2) - H(21) \cdots O(4)$	1+x	ÿ	- z	2,775	1,90	175
$N(2) - H(22) \cdots O(1)$	x	y	Z	2,781	1,90	159
$N(2) - H(23) \cdots O(3)$	1-x	$\frac{1}{2} + y$	$\frac{1}{2}-z$	2,800	1,87	168
$N(2) - H(24) \cdots O(1)$	1-x	$\bar{y} - \frac{1}{2}$	$\frac{1}{2} - z$	2,794	1,84	177
$N(3) - H(31) \cdots O(5)$	x	ÿ	- z	2,814	1,93	164
$N(3) - H(32) \cdots O(2)$	x	y	Z	2,847	1,93	168
$N(3) - H(33) \cdots O(6)$	x	$\frac{1}{2} - y$	$\frac{1}{2}+z$	2,854	2,05	160
$N(3) - H(34) \cdots O(5)$	-x	$\overline{-y}$	1 - z	2,897	2,00	155
$O(5) - H(51) \cdots O(71)$	x	ÿ	z	2,682	1,76	154
$O(5) - H(51) \cdots O(72)$	x	y	z	2,607	1,64	164
$O(5) - H(52) \cdots O(2)$	-x	1-y	1 - z	2,787	1,88	171
$O(6) - H(61) \cdots O(3)$	1-x	$\frac{1}{2}+y$	$\frac{1}{2} - z$	2,715	1,84	172
$O(6) - H(62) \cdots O(2)$	1-x	$y - \frac{1}{2}$	$\frac{1}{2} - z$	2,738	1,93	171
$O(71) - H(71) \cdots O(4)$	x	ÿ	z	2,698	1,86	153
$O(71) - H(72) \cdots O(2)$	1-x	y	z	2,825	1,94	162
$O(72)-H(71)\cdots O(4)$	x	y	Z	2,710	1,86	167
$O(72) - H(72) \cdots O(2)$	1-x	v	2	2,731	1,94	- 155

der beiden Typen OH···O und NH···O-P sind die von O(2) akzeptierten jeweils die längsten (Tabelle 10). Auf die Sonderstellung von O(7) als einzigem Wasser-Sauerstoffatom mit nur drei statt vier Wasserstoffbrücken ist die Lagefehlordnung dieses Atoms zurückzuführen. Diese zeigte sich durch ein in y-Richtung langgestrecktes Maximum in den Fouriersynthesen. Die Verfeinerung von zwei Lagen für dieses Atom führte zu dem befriedigenden Bild statistisch halber Atome O(71) und O(72) mit einem gegenseitigen Ab-

Fig. 4. Empirische Extinktionskorrektur. Die Punkte und die durch sie gelegte beste Kurve $I_o = f(I_c)$ stellen für die stärksten Reflexe die Übereinstimmung zwischen I_o und I_c dar. Alle Intensitäten I_o über 10⁵ (relativ) wurden durch Multiplikation mit dem jeweils graphisch bestimmten Faktor I_c/I_o korrigiert.

stand von 0,585 Å und etwas oberhalb und unterhalb der Ebene durch die drei Wasserstoffbrückenpartner O(2), O(4) und O(5) (Fig. 6 links oben).

Für die Darstellung einer Substanzprobe, die Ausführung diverser Photoarbeiten und eine Einführung in das Programm ORTEP (Johnson, 1965) danken die Autoren Herrn Dr H. Falius und Frau I. S. Brand (beide in Braunschweig) und Herrn Dr R. K. McMullan (jetzt in Madison, Wisconsin). Die Berechnungen zur Sammlung und Reduzierung der Daten erfolgten mit im wesentlichen eigenen Programmen im Rechenzentrum der Technischen Universität Braunschweig und alle übrigen Rechnungen mit dem System X-ray 63 (Stewart & High, 1965) im Deutschen Rechenzentrum in Darmstadt. Die Deutsche Forschungsgemeinschaft, die Stiftung Volkswagenwerk und der Fonds der Chemischen Industrie haben diese Arbeit in dankenswerter Weise gefördert.

Literatur

- COLE, F. E. (1966). Dissertation, Washington State Univ. CRUICKSHANK, D. W. J. & ROBINSON, E. A. (1966). Spectrochim. Acta, 22, 555.
- Hanson, H. P., HERMAN, F., LEA, I. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040.
- HUSE, Y. & IITAKA, Y. (1969). Acta Cryst. B25, 498.
- IITAKA, Y. & HUSE, Y. (1965). Acta Cryst. 18, 110.

JOHNSON, C. K. (1965). ORTEP, A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations. ORNL-3794. Oak Ridge National Laboratory, Tennessee. LIMINGA, R. (1965). Acta Chem. Scand. 19, 1629. LIMINGA, R. (1966). Acta Chem. Scand. 20, 2483.

Tabelle 11. Winkel zwischen kovalenten Bindungen und Wasserstoffbrücken und zwischen zwei Wasserstoffbrücken

Die Standardabweichungen betragen 1 bis 2°.

Winkel		Winkel
$P-O(1)\cdots H(12)$ $P-O(1)\cdots H(22)$ $P-O(1)\cdots H(24)$	123° 125 121	$\begin{array}{ccc} H(12)\cdots O(1)\cdots H(22) & 102 \\ H(12)\cdots O(1)\cdots H(24) & 83 \\ H(22)\cdots O(1)\cdots H(24) & 92 \end{array}$
$\begin{array}{l} P-O(2)\cdots H(32) \\ P-O(2)\cdots H(52) \\ P-O(2)\cdots H(62) \\ P-O(2)\cdots H(72) \end{array}$	107 114 120 117	$\begin{array}{cccc} H(32)\cdots O(2)\cdots H(52) & 82\\ H(32)\cdots O(2)\cdots H(62) & 133\\ H(32)\cdots O(2)\cdots H(72) & 83\\ H(52)\cdots O(2)\cdots H(62) & 76\\ H(52)\cdots O(2)\cdots H(72) & 129\\ H(62)\cdots O(2)\cdots H(72) & 86\\ \end{array}$
$P-O(3)\cdots H(13)$ $P-O(3)\cdots H(23)$ $P-O(3)\cdots H(61)$	122 116 127	$\begin{array}{ll} H(13)\cdots O(3)\cdots H(23) & 92\\ H(13)\cdots O(3)\cdots H(61) & 106\\ H(32)\cdots O(3)\cdots H(61) & 81\\ \end{array}$
$P-O(4)\cdots H(14)$ $P-O(4)\cdots H(21)$ $P-O(4)\cdots H(71)$	123 128 125	$\begin{array}{ll} H(14)\cdots O(4)\cdots H(21) & 88 \\ H(14)\cdots O(4)\cdots H(71) & 92 \\ H(21)\cdots O(4)\cdots H(71) & 90 \end{array}$
$\begin{array}{l} H(51) & \longrightarrow & O(5) & \cdots & H(31) \\ H(51) & \longrightarrow & O(5) & \cdots & H(34) \\ H(52) & \longrightarrow & O(5) & \cdots & H(31) \\ H(52) & \longrightarrow & O(5) & \cdots & H(34) \\ H(31) & \cdots & O(5) & \cdots & H(34) \end{array}$	107 93 131 118 104	$\begin{array}{cccc} H(61) & -O(6) \cdots H(11) & 109 \\ H(61) & -O(6) \cdots H(33) & 133 \\ H(62) & -O(6) \cdots H(11) & 111 \\ H(62) & -O(6) \cdots H(33) & 101 \\ H(11) \cdots O(6) \cdots H(33) & 96 \\ \end{array}$
H(71)–O(71)···H(51) H(72)–O(71)···H(51)	106 109	$\begin{array}{ll} H(71)-O(72)\cdots H(51) & 118 \\ H(72)-O(72)\cdots H(51) & 126 \end{array}$

Fig. 5. Die drei Ammoniumionen mit ihren Wasserstoffbrückenpartnern. Die unterschiedlichen Projektionsrichtungen wurden so gewählt, dass die Atome möglichst wenig überlappen und innerhalb der Figur ungefähr vergleichbare Verhältnisse herrschen. Die relative Grösse der Schwingungsellipsoide entspricht 50% Aufenthaltswahrscheinlichkeit.

Fig.6. Die drei Wassermoleküle mit ihren Wasserstoffbrückenpartnern. Im übrigen gilt der Text zu Fig. 5.

Fig. 7. Das Phosphation mit seinen Wasserstoffbrückenpartnern. Im übrigen gilt der Text zu Fig. 5.

- MIGHELL, A. D., SMITH, J. P. & BROWN, W. E. (1969). Acta Cryst. B25, 776.
- MOOTZ, D., ALTENBURG, H., FAYOS, J. & WUNDERLICH, H. (1969). Acta Cryst. A 25, S105.
- MOOTZ, D. & GOLDMANN, J. (1969). Z. anorg. allg. Chem. 368, 231.
- SCHOTTLÄNDER, P. (1894). Z. anorg. Chem. 7, 343.
- STEWART, J. M. & HIGH, D. (1965). X-ray 63, Program System for X-ray Crystallography. The Departments of Chemistry at the Univ. of Washington, Seattle, and the Univ. of Maryland, College Park.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175.
- STOUT, G. H. & JENSEN, L. H. (1968). X-ray Structure Determination, a Practical Guide, p. 456. New York: Macmillan.
- SUTOR, D. J. (1967). Acta Cryst. 23, 418.
- VEIDIS, M. V. & PALENIK, G. J. (1969). Chem. Comm. p. 196.
- WHITAKER, A. (1965). Dissertation, Univ. of London.
- WUNDERLICH, H. (1969). Dissertation, Technische Univ. Braunschweig.